Explicit minimisation of a convex quadratic under a general quadratic constraint 9 July 2007

نویسندگان

  • Casper Albers
  • Frank Critchley
  • John Gower
چکیده

An analytical solution is provided to the problem of minimising a convex quadratic under a general quadratic (inequality) constraint, additional affine constraints being easily accommodated. Such problems occur widely. The explicit, analytical solution provided offers insight into the diverse nature both of special cases of this problem and of their solution sets. This sheds light on algorithm performance and design, intrinsically unstable problems being a particular focus. Points of contact with simultaneous diagonalisation results are noted. AMS classification: 15A18; 90C20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

متن کامل

On the duality of quadratic minimization problems using pseudo inverses

‎In this paper we consider the minimization of a positive semidefinite quadratic form‎, ‎having a singular corresponding matrix $H$‎. ‎We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method‎. ‎Given this approach and based on t...

متن کامل

Unbounded convex sets for non-convex mixed-integer quadratic programming

This paper introduces a fundamental family of unbounded convex sets that arises in the context of non-convex mixed-integer quadratic programming. It is shown that any mixed-integer quadratic program with linear constraints can be reduced to the minimisation of a linear function over a set in the family. Some fundamental properties of the convex sets are derived, along with connections to some o...

متن کامل

Convex Hulls of Quadratically Parameterized Sets With Quadratic Constraints

{(f1(x), . . . , fm(x)) : x ∈ T } for quadratic polynomials f0, . . . , fm and a subset T of R . This paper studies semidefinite representation of the convex hull conv(V ) or its closure, i.e., describing conv(V ) by projections of spectrahedra (defined by linear matrix inequalities). When T is defined by a single quadratic constraint, we prove that conv(V ) is equal to the first order moment t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007